
Acta Cryst. (2007). A63, 465–480 doi:10.1107/S0108767307047411 465

research papers

Acta Crystallographica Section A

Foundations of
Crystallography

ISSN 0108-7673

Received 10 July 2007

Accepted 26 September 2007

# 2007 International Union of Crystallography

Printed in Singapore – all rights reserved

The crystallographic fast Fourier transform.
Recursive symmetry reduction

Andrzej Kudlicki,‡2Maga Rowicka‡ and Zbyszek Otwinowski*

Department of Biochemistry, UT Southwestern Medical Center at Dallas, 5323 Harry Hines

Boulevard, Dallas, TX 75390-8816, USA. Correspondence e-mail: zo@work.swmed.edu

Algorithms are presented for maximally efficient computation of the crystal-

lographic fast Fourier transform (FFT). The approach is applicable to all 230

space groups and allows reduction of both the computation time and the

memory usage by a factor equal to the number of symmetry operators. The

central idea is a recursive reduction of the problem to a series of transforms on

grids with no special points. The maximally efficient FFT for such grids has been

described in previous papers by the same authors. The interaction between the

grid size factorization and the symmetry operators and its influence on the

algorithm design are discussed.

1. Introduction

So far, no algorithm has been found that provides efficient

computation of the Fourier transform in the presence of

crystallographic symmetry for most of the 230 symmetry

groups. Such algorithms should operate only on the asym-

metric unit and their speed should be similar to a P1 fast

Fourier transform (FFT) of the same amount of data. Ten

Eyck (1973) has presented a partial solution to this problem,

working for several space groups.

Subsequently, optimization of crystallographic FFT has

attracted lots of attention and has been the subject of more

than 20 publications. In particular, a general approach has

been proposed by Bricogne (1993), but without a prescription

of how to design algorithms for a large number of space

groups. All FFT implementations in today’s crystallographic

software are either based on Ten Eyck’s ideas (Brunger, 1988;

Pavelčı́k, 2002) or neglect the symmetry and perform the FFT

on the whole unit cell.

This paper is the final in a series of articles describing our

algorithms for evaluation of the crystallographic FFT. Up to

now, we have presented explicit schemes for one-step

symmetry reduction for 67 space groups in papers I and II

(Rowicka et al., 2002, 2003a). Then, in paper III (Rowicka et

al., 2003b), we extended this scheme by the 44 space groups

containing centering translations. In paper IV (Kudlicki et al.,

2004), we discussed the shapes of asymmetric units in the

reciprocal space. Here we present a generalized approach,

based on recursive decomposition of symmetry-invariant

computational grids. We show that the algorithms presented

are applicable to all of the remaining symmetry groups, thus

completing the theoretical foundation of maximally efficient

crystallographic FFT’s.

Our goal is to compute the discrete Fourier transform of a

periodic function f defined on Z3. Such a function will have

the periodicity of the underlying crystal structure. The crystal

periodicity can be described by a 3� 3 matrix with

integer entries, A, whose columns are the primitive

translation vectors. These vectors are linearly independent,

hence det A 6¼ 0. The crystal periodicity condition reads

f ðxþ tÞ ¼ f ðxÞ, where x 2 Z3 and t 2 AZ3
¼

fv 2 Z3 : there exists y 2 Z3 such that v ¼ Ayg. The equiva-

lence class of x (with respect to the equivalence relation of

having the same crystallographic coordinates) is defined by

½x�A ¼ fy 2 Z
3 : y� x 2 AZ3

g.

To describe the periodicity conditions in a convenient way,

we shall consider the quotient space of Z3 by AZ3 (paper II;

Bricogne, 1993): Z3=AZ3
¼ f½x�A : x 2 Z3

g. Instead of viewing

f as a periodic function, it can be considered as defined on the

set of the equivalence classes, Z3=AZ3. Let us introduce the

notation

� ¼ Z3=AZ3 and �� ¼ Z3=AT
Z

3; ð1Þ

where AT denotes the transposition of matrix A. The space ��

is a space dual to �. Its elements are covectors, i.e. objects dual

to vectors (Rowicka et al., 2004). When there is no risk of

confusion, they will be called vectors. The scalar product of a

covector h 2 �� and a vector x 2 � will be denoted by h � x.

We shall use a shorthand notation eAðh; xÞ for the coefficient

(‘twiddle factor’)

eAðh; xÞ ¼ expð�2�ih �A�1xÞ:

Let f be a complex-valued function on �. The Fourier trans-

form of f , denoted by F, is defined for h 2 �� by

FðhÞ ¼
P
x2�

f ðxÞeAðh; xÞ:

Assume that A0 and A1 are matrices with integer entries, such

that‡ These authors have contributed equally.



A ¼ A0A1: ð2Þ

Let us define X0 ¼ Z
3=A0Z

3 and X1 ¼ Z
3=A1Z

3. Then every

element x 2 � can be expressed uniquely as

x ¼ x0 þA0x1; ð3Þ

where x0 2 X0 and x1 2 X1. Analogously, we define

X�0 ¼ Z
3=AT

0 Z
3 and X�1 ¼ Z

3=AT
1 Z

3. Then, in the reciprocal

space, there is a similar unique representation for every

h 2 ��:

h ¼ h1 þAT
1 h0; ð4Þ

where h0 2 X�0 and h1 2 X�1 .

We will perform all the computations in the grid coordinate

system. It is defined by the matrix A, describing the grid �
[equation (1)], and by a translation vector b. Let xc and x

denote the coordinates of the same point in the crystal-

lographic and grid coordinate systems, respectively. The

transformation from the crystallographic to the grid coordi-

nates is then given by

x ¼ Axc
þ b: ð5Þ

The relationship between the symmetry operator in the crys-

tallographic coordinate system ðRc
g; tc

gÞ and in the grid coor-

dinate system ðRg; tgÞ is

Rg ¼ Rc
g and tg ¼ ðI� Rc

gÞbþAtc
g; ð6Þ

where I is the identity matrix. Let G denote the quotient (or

factor) crystallographic space group (Bricogne, 1993; paper

II). The elements of G are the symmetry operators as listed in

International Tables for Crystallography (ITC) (Hahn, 1995).

The group operation in G is the ordinary composition of

symmetry operators. An element g 2 G acts on equivalence

classes ½x�A ¼ x 2 � ¼ Z3=AZ3 (real space) by

SgðxÞ ¼ Rgxþ tg: ð7Þ

The rotational part Rg of the symmetry operator Sg can be

either a proper (det Rg ¼ 1) or an improper (det Rg ¼ �1)

rotation. The action (7) extends to the action S� on the Fourier

transforms in the reciprocal space:

S�gFðhÞ ¼ eAðh; tgÞFðR
T
g hÞ: ð8Þ

2. Recursive symmetry reduction

A starting point to any crystallographic FFT calculation is a

symmetry-invariant periodic grid. In the cases discussed in

papers I–III, we designed the maximally efficient crystal-

lographic FFT (Appendix A) by employing a set of mutually

disjoint symmetry-related periodic subgrids that sum up to the

starting grid (Fig. 1, top). A necessary condition for such a

decomposition to exist is that there are no symmetry-invariant

data points; all grid points are in general positions. We will call

such a grid a GP grid.

In this paper, we discuss efficient crystallographic FFT’s

when a GP grid does not exist.

A crucial observation on which this paper is based is that

every grid containing points in special positions (SP grid) can

be decomposed into a sum of disjoint periodic SP and GP

grids. Moreover, one can choose symmetry-invariant SP

subgrid(s) and symmetry-related GP subgrids (Fig. 1, bottom).

The algorithms for symmetry-related GP grids are described

in papers I–III. The SP grid(s) can be decomposed again and

again until one-point grids are reached (Fig. 2). Points in

special positions are computationally inconvenient, because

they are different from points in general positions, and we are

forced to keep track of these differences during computations.
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Figure 1
Differences between the decomposition employed in papers I–III (top)
and in this paper (bottom). The number of SP and GP grids may vary.

Figure 2
Recursive symmetry decomposition. Only the SP grids are decomposed
further (until single-point grids are reached). The number of subgrids at
every step depends on the symmetry operators and on the prime-factor
decomposition of the grid size.



However, at the level of 1-point grids, the Fourier transform is

trivial and a special point does not pose a problem.

The recursive symmetry decomposition is the central point

of this paper and will be described in detail. This type of

decomposition was studied in the one-dimensional case by

Swarztrauber (1986) and mentioned in the discussion of the

effects of symmetry on the Cooley–Tukey decomposition by

Bricogne (1993).

3. Diagonal mirror symmetry

We begin presentation of recursive symmetry decomposition

with a simple case of the ‘diagonal mirror’ crystallographic

symmetry (symmetry operator y; x; z). We consider the two-

dimensional case because the symmetry in the third dimension

is trivial. Let us assume for a moment that the grid size is

divisible by two. Now the crystal periodicity can be described

by the matrix A:

A ¼
2N 0

0 2N

� �
;

where N is an integer and det A equals the number of grid

points in the two-dimensional unit cell. By (6), the diagonal

mirror symmetry description is the same in both the grid and

the crystallographic coordinates (b ¼ � 1
2 e1 �

1
2 e2, where

e1; e2 are standard basis vectors of Z2):

R� ¼
0 1

1 0

� �
; t� ¼

0

0

� �
:

Let us choose the matrices A0 and A1, describing the

decomposition of � ¼ Z2=AZ2 given by (2), as:

A0 ¼
2 0

0 2

� �
and A1 ¼

N 0

0 N

� �
:

In other words, we decompose � into four subgrids, according

to the parity of the x and y coordinates, i.e. the first grid

�0 ¼ A0X1 (colored red in Fig. 3) has both coordinates even

etc. We use the decomposition of x, given by (3), to introduce

four new functions:

f00ðx1Þ ¼ f ðA0x1Þ

f10ðx1Þ ¼ f ðA0x1 þ e1Þ

f01ðx1Þ ¼ f ðA0x1 þ e2Þ

f11ðx1Þ ¼ f ðA0x1 þ e1 þ e2Þ;

9>>>=
>>>;

ð9Þ

where x1 2 X1 ¼ Z
2=A1Z

2. Then, the Fourier transform F can

be expressed as a combination of transforms of the four

functions defined above:

FðhÞ ¼
P
x2�

f ðxÞeAðh; xÞ

¼
P

x2�0

f ðxÞeAðh; xÞ þ
P

x2�0

f ðxþ e1ÞeAðh; xþ e1Þ

þ
P

x2�0

f ðxþ e2ÞeAðh; xþ e2Þ

þ
P

x2�0

f ðxþ e1 þ e2ÞeAðh; xþ e1 þ e2Þ

¼
P

x12X1

f00ðx1ÞeA1
ðh; x1Þ þ eAðh; e1Þ

P
x12X1

f10ðx1ÞeA1
ðh; x1Þ

þ eAðh; e2Þ
P

x12X1

f01ðx1ÞeA1
ðh; x1Þ

þ eAðh; e1 þ e2Þ
P

x12X1

f11ðx1ÞeA1
ðh; x1Þ:

Let us now use the decomposition of h, given by (4). It

follows that

eA1
ðh; x1Þ ¼ eA1

ðh1 þAT
1 h0; x1Þ ¼ eA1

ðh1; x1Þ; ð10Þ

because both h0 and x1 have integer components

eA1
ðAT

1 h0; x1Þ ¼ eA1
ðh0;A1x1Þ

¼ expð�2�ih0 � ðA1Þ
�1A1x1Þ ¼ 1:

We will use this simple observation repeatedly later on. Let F00

denote the Fourier transform of the function f00:

F00ðh1Þ ¼
P

x12X1

f00ðx1ÞeA1
ðh1; x1Þ;

where h1 2 Z
2=AT

1Z
2. Analogously, let F01, F10 and F11 denote

the Fourier transforms of the functions f01, f10 and f11,

respectively. Then, by (10),

FðhÞ ¼ F00ðh1Þ þ eAðh; e1ÞF10ðh1Þ

þ eAðh; e2ÞF01ðh1Þ þ eAðh; e1 þ e2ÞF11ðh1Þ: ð11Þ

Since f ðxÞ ¼ f ðR�xÞ and R2
� ¼ I, it follows that

eAðh; e1ÞF10ðh1Þ ¼
P

x2�0

f ðxþ e1ÞeAðh; xþ e1Þ

¼
P

x2�0

f ðR�ðxþ e1ÞÞeAðR
T
�h;R�ðxþ e1ÞÞ

¼
P

x2�0

f ðR�xþ e2ÞeAðR
T
�h; ðR�xþ e2ÞÞ

¼ eAðR
T
�h; e2ÞF01ðR

T
�h1Þ:

Moreover,

eAðR
T
�h; e2Þ ¼ eAðh;R�e2Þ ¼ eAðh; e1Þ:

After substituting the thus derived relationship,

F10ðh1Þ ¼ F01ðR
T
�h1Þ; ð12Þ
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Figure 3
Subgrid decomposition for the diagonal mirror symmetry. The data points
are located in the centers of the colored squares. There are two SP
subgrids red ð�0Þ and green and two GP ones (blue and yellow).



into (11), we obtain

FðhÞ ¼ F00ðh1Þ þ eAðh; e1 þ e2ÞF11ðh1Þ

þ eAðh; e1ÞF01ðR
T
�h1Þ þ eAðh; e2ÞF01ðh1Þ: ð13Þ

The Fourier transform F of the entire unit cell can be

expressed by the three transforms F00, F11 and F01 [equation

(13)]. Thus the computation of the Fourier transform of the

initial number of points is reduced to the computation of three

Fourier transforms each of one quarter of all points. The

transform F01 has no internal symmetry, therefore it will be

calculated directly. The two transforms F00 and F11 reveal

diagonal mirror symmetry, therefore they can be decomposed

again, by applying equation (13) with F00 or F11 substituted as

the new F.

If N is a power of 2, we can repeat this decomposition until

we reach one-point grids. The resulting asymmetric unit

consists of several regular subgrids of different sizes and has a

self-similar fractal-like shape (Fig. 4).

At the first step of the decomposition, one GP grid of N2

points is added to the asymmetric unit. In the next step, we add

one GP grid of N2=4 points for each of the two N2-point GP

grids and so on until the last step, when we add 3N 1-point

grids to the asymmetric unit. From these, N are GP and 2N are

SP grids (2N is the number of grid points along the diagonal).

Therefore, the size of the thus chosen asymmetric unit can be

computed as

N2
þ

N2

2
þ

N2

22
þ . . .þ

N2

2n�1
þ

N2

2n

� �
þ 2N ¼ 2N2

þ N:

The total number of points in the unit cell is 4N2, so the

fraction of unit-cell points belonging to the asymmetric unit is
1
2þ 1=ð4NÞ and converges to 1

2 for large N.

Let us now switch to the general case where the number of

data points is not necessarily divisible by two. Since the

number of grid points is always a square of an integer, each

factor in its prime-number decomposition appears twice.

Suppose now that the number of grid points is p2N2, where p is

a prime number. Then we decompose the grid � into p2

subgrids according to the values of coordinates modulo p:

A ¼
pN 0

0 pN

� �
; A0 ¼

p 0

0 p

� �
; A1 ¼

N 0

0 N

� �
:

For example, if p ¼ 3, we divide the grid into nine subgrids.

Three of these subgrids (those with both coordinates equal

modulo 3) will be symmetry-invariant SP grids, and the other

six will form three pairs of symmetry-related GP grids. The

result we get is

FðhÞ ¼ F00ðh1Þ þ eAðh; e1ÞF10ðh1Þ

þ
P1

q¼0

P2

r¼qþ1

eAðh; qe1 þ re2ÞFqrðh1Þ
�

þ eAðh; re1 þ qe2ÞFqrðR
T
�h1Þ

�
: ð14Þ

For a general prime factor p, we obtain p symmetry-invariant

SP subgrids (again, these will be the subgrids with both

coordinates equal modulo p) and p2 � p subgrids of the GP

type, which will form pðp� 1Þ=2 pairs of symmetry-related GP

subgrids.

3.1. Diagonal glide planes

For the symmetry operator yþ 1
2 ; xþ 1

2 (ITC groups 100,

113, 125, 127, 129 and 138), the above reasoning is valid after

substitution of

Fðh1Þ ¼ eAðh; tgÞFðR
T
�h1Þ; ð15Þ

where

tg ¼
N

N

� �
;

in place of (12).

Similar small changes (and switching to the three-dimen-

sional space) are needed to treat glide planes related to the

symmetry operators y; x; zþ 1
2 (ITC groups 103, 105, 112, 124,

131 and 133) and yþ 1
2 ; xþ 1

2 ; zþ 1
2 (ITC groups 104, 106, 114,

126, 128, 130, 135 and 137).

3.2. Combining diagonal mirror symmetry with body
centering (i.e. with the symmetry operator x + 1

2, y + 1
2, z + 1

2)

To combine the diagonal mirror decomposition with

reduction of body centering, we assume the following form of

matrix A and vector b:

A ¼

4N 0 0

0 4N 0

0 0 2Q

2
4

3
5 and b ¼ � 1

2 e1 �
1
2 e2 �

1
2 e3;

where N and Q are positive integers. The grid in the xy plane

is decomposed as in the diagonal mirror case. The resulting

GP grids are symmetry invariant for the operator

xþ 1
2 ; yþ 1

2 ; zþ 1
2. Therefore, we can reduce body centering

as in paper III and compute the Fourier transform on the

asymmetric part. We proceed with the diagonal mirror algor-

ithm computing the FFT at every step on GP grids after

research papers

468 Andrzej Kudlicki et al. � Crystallographic FFT. Recursive symmetry reduction Acta Cryst. (2007). A63, 465–480

Figure 4
A fractal-like asymmetric unit for the diagonal mirror symmetry consists
of several regular subgrids of different sizes. Left: 16� 16 unit cell. Right:
32� 32 unit cell. It contains two exact copies of the asymmetric unit for
the 16� 16 unit cell and two slightly altered copies. The two exact copies
lie on the diagonal of the 32� 32 unit cell.



reducing their body centering. This is the case of the ITC

groups 107, 108, 121, 139 and 140.

If, instead of the diagonal mirror symmetry operator y; x; z

we are dealing with the operator yþ 1
2 ; x; zþ 3

4 (groups 109,

122 and 141) or yþ 1
2 ; x; zþ 1

4 (groups 110 and 142), every-

thing except the form of tg in (15) remains the same.

4. Trigonal groups

We start with the basic example of the p3 symmetry, then

proceed to p6 symmetry and also comment on groups such as

p3m1 and rhombohedral centering.

4.1. p3 symmetry with special points

The p3 symmetry reduction with all points in general

positions was addressed in paper I. However, as we shall see,

in some cases it is necessary to reduce the p3 symmetry in the

presence of special points. Then we will use a recursive

algorithm similar to our solution for the diagonal mirror

symmetry. Let assume that

A ¼
M 0

0 M

� �

and that M is a positive integer. The algorithm presented

works for any positive integer value of M, however we shall

start with an example of even M. In this case, M ¼ 2N and

A0 ¼
2 0

0 2

� �
and A1 ¼

N 0

0 N

� �
;

where N is a positive integer (Fig. 5).

Note that this decomposition gives one SP subgrid and

three GP subgrids. The SP subgrid is invariant under the

action of the p3 group and the three GP subgrids are trans-

formed into each other. Therefore, it is sufficient to keep one

of these GP grids in the asymmetric unit.

In the general case, we shall use a prime factor of M, p. We

define N by M ¼ pN and perform the following decomposi-

tion:

A ¼
pN 0

0 pN

� �
; A0 ¼

p 0

0 p

� �
; A1 ¼

N 0

0 N

� �
:

For example, if p ¼ 3, then

A0 ¼
3 0

0 3

� �
;

i.e. we divide the grid into nine subgrids. Three of these grids

have points on axes and six do not. Until now, the decom-

position has been the same as for diagonal mirror symmetry.

However, in the case of the p3 symmetry, the relationship

between these six GP subgrids are different. Specifically, there

are two triples of symmetry-related GP grids (Fig. 6). There-

fore, to know the Fourier transform of the whole grid it is

sufficient to compute it on the three SP subgrids and two

properly chosen (out of six) GP grids.

If p ¼ 5, this decomposition yields 1 SP subgrid and 24 GP

subgrids, from which we properly choose 8. Let us now

consider the case of a general prime number p. For simplicity,

since the case of p ¼ 3 was discussed above, suppose that

p 6¼ 3. Observe that we will have only one (up to primitive

translations) special point in every unit cell (three for the case

of p ¼ 3). Therefore, it is evidently possible to decompose the

original SP grid into p2 subgrids in such a way that only one

resulting subgrid is a SP subgrid (there will be three SP

subgrids for p ¼ 3). Thus, we will get p2 � 1 symmetry-related

GP subgrids. One of the three consecutive integers is always

divisible by three. In our case of consecutive integers, p� 1, p,

pþ 1, the one divisible by three must be either p� 1 or pþ 1

because p is assumed to be prime and not equal to three.

Therefore, p2 � 1 ¼ ðp� 1Þðpþ 1Þ will be always divisible by

three. Consequently, the p2 � 1 GP grids are arranged into

ðp2 � 1Þ=3 triples of GP grids related by the p3 symmetry. It is

sufficient to compute the FFT on one representative of every

symmetry-related triple of GP grids.
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Figure 5
Subgrid decomposition for the p3 symmetry for even numbers of points
along x and y axes. All grid points lie in the centers of colored triangles.
The SP grid is yellow, the GP grids are red, blue and green. The SP grid
retains the p3 symmetry.

Figure 6
Subgrid decomposition for the p3 symmetry when the number of points
along x and y axes is odd and divisible by 3. Note that all SP grids (yellow,
light pink and dark blue) are p3 symmetry invariant. Moreover, there are
two triples, (green, turquoise, grey) and (orange, red, brown), of
symmetry-related GP grids.



Now we come back to the case of even N and describe it in

more detail. Let

A ¼
2N 0

0 2N

� �
and b ¼

0

0

� �

and let us choose

A0 ¼
2 0

0 2

� �
and A1 ¼

N 0

0 N

� �
:

Then,

� ¼ Z2=AZ2 and X1 ¼ Z
2=A1Z

2:

Let � denote the symmetry operator �yy; x� y, which encodes

the 120� counterclockwise rotation. Then, the symmetry

operators � and �2 are described in the grid coordinates by

matrices

R� ¼
0 �1

1 �1

� �
and R�2 ¼

�1 1

�1 0

� �
;

respectively. Let f be a function defined on �. Exactly as in the

case of the diagonal mirror symmetry, we introduce four new

functions: f00, f10, f01 and f11, given by (9). We can also derive

the decomposition formula, which has the same form as (11).

Since f ðxÞ ¼ f ðR�xÞ and R3
� ¼ I, by (10), it follows that

F10ðh1Þ ¼
P

x2�0

f ðxþ e1ÞeAðh; xÞ

¼
P

x2�0

f ðR�ðxþ e1ÞÞeAðR
T
�2 h;R�xÞ

¼
P

x2�0

f ðR�xþ e2ÞeAðR
T
�2 h;R�xÞ

¼
P

x2�0

f01ðR�xÞeAðR
T
�2 h;R�xÞ

¼ F01ðR
T
�2 h1Þ:

Therefore, in this case the symmetry of the Fourier transform

is given by

F10ðh1Þ ¼ F01ðR
T
�2 h1Þ; hence F01ðh1Þ ¼ F10ðR

T
�h1Þ: ð16Þ

Note that the above expressions are different from (12).

Analogously, we obtain the formula relating F11 to F10:

F11ðh1Þ ¼
P

x2�0

f ðxþ e1 þ e2ÞeAðh; xÞ

¼
P

x2�0

f ðR�ðxþ e1 þ e2ÞÞeAðR
T
�2 h;R�xÞ

¼
P

x2�0

f ððR�x� 2e1Þ þ e1ÞeAðR
T
�2 h;R�x� 2e1Þ

� eAðR
T
�2 h; 2e1Þ

¼ eAðR
T
�2 h; 2e1ÞF10ðR

T
�2 h1Þ:

Since eAðR
T
�2 h; 2e1Þ ¼ eAðh;�2e1 � 2e2Þ, it follows that

F11ðh1Þ ¼ eAðh;�2e1 � 2e2ÞF10ðR
T
�2 h1Þ: ð17Þ

Therefore, after substituting (16) and (17) into formula (11)

and simplifying coefficients, we obtain

FðhÞ ¼ F00ðh1Þ þ eAðh; e1ÞF10ðh1Þ þ eAðh; e2ÞF10ðR
T
�h1Þ

þ eAðh;�e1 � e2ÞF10ðR
T
�2 h1Þ: ð18Þ

The above formula shows that in order to compute the Fourier

transform F it is sufficient to compute the Fourier transform

F10 on 1
4 of the data points and apply a similar (depending on

factorization of N) decomposition to compute the Fourier

transform F00.

Let us assume for a moment that N ¼ 2n. Then, in order to

reduce the symmetry further, the SP grid should be divided

into four subgrids again, and so on, as in the diagonal mirror

case. The asymmetric unit (on which we will compute the

Fourier transform) should consist of one GP grid from every

stage of decomposition plus all 1-point SP grids. Observe that

at the first step of the decomposition one GP grid of N2 points

is added to the asymmetric unit. In the next step, we add one

GP grid of N2=4 points, and so on, until the last step, when we

add one 1-point GP grid to the asymmetric unit. Moreover, in

this last step, we also add the only 1-point SP grid generated

during this decomposition. Therefore, the size of the thus

chosen asymmetric unit can be computed as follows (keeping

in mind the assumption that N2 ¼ 4n):

N2 þ
N2

4
þ

N2

42
þ . . .þ

N2

4n

� �
þ 1 ¼

4N2 � 1

3
þ 1 ¼

4N2 þ 2

3
:

In other words, the size of the asymmetric unit is the smallest

integer greater than 4N2=3, i.e. the smallest possible asym-

metric unit. If N is not a power of two, then we decompose our

grid consecutively according to the prime-factor decomposi-

tion of N analogously to the diagonal mirror case. The

difference is the relative number of SP and GP grids and

symmetry relations of the latter, as discussed above.

4.2. The p6 symmetry

The factor crystallographic group corresponding to the p3

symmetry is fe; �; �2g, with the notation from the previous

subsection. This group is a subgroup of the factor crystal-

lographic group corresponding to the p6 symmetry. This

group, G, consists of the following elements:

G ¼ fe; �; �2; �; ��; �2�g;

where � denotes the 180� rotation operator �xx; �yy; z:

R� ¼
�1 0

0 �1

� �
:

Let us assume that the p3 symmetry induced by the subgroup

fe; �; �2g is reduced in the same way as in the previous section.

The �-invariance properties of the subgrids obtained during

reduction of the p3 symmetry depend on the form of the

matrices A and A0. Therefore, before we proceed to reducing

the residual twofold symmetry induced by �, we have to know

the form of these matrices. Let us assume that A0 ¼ 2I and

that the initial number of grid points was not divisible by three.

Then all subgrids obtained during p3 symmetry reduction are

invariant with respect to the 180� rotation. Therefore, we can

choose any of the GP grids with respect to the p3 symmetry

and reduce the symmetry induced by the 180� rotation.

research papers

470 Andrzej Kudlicki et al. � Crystallographic FFT. Recursive symmetry reduction Acta Cryst. (2007). A63, 465–480



However, if A0 ¼ pI, where p is prime and different from two

or three,1 then the only �-invariant subgrid will be the SP

subgrid on which f00 is defined. Therefore, instead of decom-

posing any of these subgrids further, it will be sufficient to

identify pairs of GP subgrids that are related through a 180�

rotation, and keep only one representative of each pair in the

asymmetric unit. (Note that grids in these pairs are not related

by a 120� rotation.) Namely, instead of ðp2 � 1Þ=3 GP subgrids,

it is sufficient to add to the asymmetric unit at the first step

only ðp2 � 1Þ=6 of them, chosen in such a way that they are

related neither through p3 symmetry nor through a 180�

rotation. [Note that since p is prime then p2 � 1 is even if

p 6¼ 2. Moreover, as explained in the previous subsection,

p2 � 1 ¼ ðp� 1Þðpþ 1Þ is divisible by three if p 6¼ 3. There-

fore, for p 6¼ 2 and p 6¼ 3, the expression p2 � 1 is divisible by

six and the number ðp2 � 1Þ=6 is integer.]

Let us now focus on the case when A ¼ 2NI and A0 ¼ 2I.

Then the formulae (11) and (18) can be applied. Our starting

grid for the reduction of symmetry induced by � will be the

one on which the function f10 is defined [equation (9)], that is

the grid whose elements are of the form A0x1 þ e1. We begin

reducing the twofold symmetry by checking whether there are

special points with respect to this symmetry. A necessary

condition for a point to be invariant with respect to the

symmetry operator in question is that

R�ðA0x1 þ e1Þ ¼ A0x1 þ e1:

One can check that R� commutes with A0. It follows that

R�ðA0x1 þ e1Þ ¼ R�A0x1 þ R�e1

¼ A0R�x1 � e1

¼ A0R�x1 � 2e1 þ e1

¼ A0ðR�x1 � e1Þ þ e1:

Therefore, the coordinates of the symmetry-invariant point

have to satisfy the condition

x1 ¼ R�x1 � e1:

Since the matrix describing our computational grid is now

A1 ¼ NI, it follows that the x and y coordinates should be

understood modulo N. Therefore, the solution of the above

invariance condition is either (x ¼ ðN � 1Þ=2, y ¼ N=2) or

(x ¼ ðN � 1Þ=2, y ¼ 0). Hence, since grid coordinates of data

points are integer, there are no fixed grid points, provided that

N is even. Let us assume for a moment that this is the case, i.e.

that N is divisible by 2. Then, we can define

~AA0 ¼
2 0

0 1

� �
and ~AA1 ¼

N
2 0

0 N

� �
:

Note that

A1 ¼
~AA0

~AA1 and A ¼ A0
~AA0

~AA1:

We will decompose x1 again, according to (3):

x1 ¼
~AA0 ~xx1 þ ~xx0;

where ~xx1 2
~XX1 ¼ Z

2= ~AA1Z
2 and ~xx0 2

~XX0 ¼ Z
2= ~AA0Z

2
¼ f0; e1g.

Let us also define

f10;0ð~xx1Þ ¼ f10ð
~AA0 ~xx1Þ ¼ f ðA0

~AA0 ~xx1 þ e1Þ

f10;1ð~xx1Þ ¼ f10ð
~AA0 ~xx1 þ e1Þ ¼ f ðA0ð

~AA0 ~xx1 þ e1Þ þ e1Þ:

Let F10;0 and F10;1 denote the Fourier transforms of the

functions f10;0 and f10;1, respectively. Analogously to the

decomposition of x1, we have the following decomposition

of h1:

h1 ¼
~hh1 þ

~AAT
1

~hh0;

where ~hh1 2 Z
2= ~AAT

1 Z
2 and ~hh0 2 Z

2= ~AAT
0Z

2
¼ f0; e�1g. That is,

F10;0ð
~hh1Þ ¼

P
~xx12

~XX1

f10;0ð~xx1Þe ~AA1
ð ~hh1; ~xx1Þ:

Note that

F10ðh1Þ ¼
P

x12X1

f10ðx1ÞeA1
ðh1; x1Þ

¼
P

~xx12
~XX1

f10ð
~AA0 ~xx1ÞeA1

ðh1; ~AA0 ~xx1Þ

þ eA1
ðh1; e1Þ

P
~xx12

~XX1

f10ð
~AA0 ~xx1 þ e1ÞeA1

ðh1; ~AA0 ~xx1Þ

¼
P

~xx12
~XX1

f10;0ð~xx1Þe ~AA1
ðh1; ~xx1Þ

þ eA1
ðh1; e1Þ

P
~xx12

~XX1

f10;1ð~xx1Þe ~AA1
ðh1; ~xx1Þ:

Moreover, by (10),

F10ðh1Þ ¼ F10;0ð
~hh1Þ þ eA1

ðh1; e1ÞF10;1ð
~hh1Þ:

Since f ðxÞ ¼ f ðR�xÞ and

R�fA0ð
~AA0 ~xx1 þ e1Þ þ e1g ¼ A0

~AA0R� ~xx1 � 3e1

¼ A0
~AA0R� ~xx1 � 4e1 þ e1

¼ A0
~AA0ðR� ~xx1 � e1Þ þ e1;

it follows that

f10;1ð~xx1Þ ¼ f10;0ðR� ~xx1 � e1Þ:

Hence,

F10;1ð
~hh1Þ ¼

P
~xx12

~XX1

f10;0ðR� ~xx1 � e1Þe ~AA1
ðRT

�
~hh1;R� ~xx1 � e1Þ

� e ~AA1
ðRT

�h1; e1Þ

¼ e ~AA1
ðRT

�h1; e1ÞF10;0ðR
T
�

~hh1Þ:

Moreover,

e ~AA1
ðRT

�h1; e1Þ ¼ e ~AA1
ðh1;R�e1Þ ¼ e ~AA1

ðh1;�e1Þ

and

eA1
ðh1; e1Þe ~AA1

ðh1;�e1Þ ¼ eA1
ðh1; e1ÞeA1

ðh1;� ~AA0e1Þ

¼ eA1
ðh1; e1ÞeA1

ðh1;�2e1Þ

¼ eA1
ðh1;�e1Þ:
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Consequently,

F10ðh1Þ ¼ F10;0ð
~hh1Þ þ eA1

ðh1;�e1ÞF10;0ðR
T
�

~hh1Þ:

Therefore, taking into account equation (18), we see that it is

sufficient to compute F10;0 on 1
8 of the data points and F00 on 1

4

of the data points. To compute F00, we decompose our grid

again and again (reducing p3 symmetry first and the twofold

symmetry induced by �) according to the factorization of N

(Fig. 7).

Let us now go back to the point at which we obtained four

subgrids as a result of the p3 symmetry reduction described by

matrices A0 ¼ 2I and A1 ¼ NI. Above we derived the

formulae for the case of N even. If N is odd and is divisible by

a prime number p such that p> 2, we would use the matrix

~AA0 ¼
p 0

0 1

� �

to describe the decomposition of our computational grid into

p subgrids. One can check that among these subgrids only the

subgrid ~AA0 ~xx1 þ ½ðp� 1Þ=2�e1 is invariant under the 180�

rotation. Therefore, we have to compute the Fourier transform

on ðp� 1Þ=2 grids with points in general position and on one

grid with points in special positions. This SP grid should be

decomposed again, this time along the y axis, to reduce the

twofold symmetry. This algorithm is applied to the ITC groups

168–173 and, after reducing z-mirror symmetry, to the groups

175–182.

4.3. Diagonal mirror �y, �x with no points on axes

The combination of the p3 symmetry and what we call here

the ‘diagonal mirror �y;�x’ occurs for example in the crys-

tallographic group P3m1. The algorithm for reducing p3

symmetry of a GP grid was described in detail in papers I and

II. Now we will use the same algorithm, we only pick a

different subgrid for further calculations. Specifically, as

opposed to the previous case, where the Fourier transform was

computed on a subgrid whose sum of coordinates was divisible

by three, now we choose a subgrid whose sum of coordinates

equals 2 modulo 3. Our motivation for a different choice is

that we need a subgrid invariant with respect to the symmetry

operator �y;�x. Unlike in the case of reducing p3 symmetry

of a SP grid (described in x4.1) now we use a different grid

coordinate system, given by

A ¼ 3N
1 0

0 1

� �
and b ¼ � 1

3

2

1

� �
:

Moreover, the matrices A0 and A1 are also changed:

A0 ¼
3 0

0 3

� �
and A1 ¼

N 0

0 N

� �
:

As in x4.1, let us denote the 120 and 240� counterclockwise

rotations around the origin of the crystallographic

coordinate system by � and �2, respectively. Let � denote

the diagonal mirror operator �yy; �xx. Then the group

G ¼ fe; �; �2; �; ��; ��2g. The symmetry operators are given

in the grid coordinates by

R� ¼
0 �1

1 �1

� �
and t� ¼

�1

0

� �
2

2

0

� �� �
A0

ð19Þ

R�2 ¼
�1 1

�1 0

� �
and t�2 ¼

�1

�1

� �
2

1

0

� �� �
A0

ð20Þ

R� ¼
0 �1

�1 0

� �
and t� ¼

�1

�1

� �
2

1

0

� �� �
A0

: ð21Þ

Let us also define

fnmðx1Þ ¼ f ðA0x1 þ ne1 þme2Þ;

where x1 2 X1 and n;m 2 f0; 1; 2g.

Let Fnm denote the Fourier transform of the function fnm,

Fnmðh1Þ ¼
P

x12X1

fnmðx1ÞeA1
ðh1; x1Þ;

where h1 2 Z
2=AT

1 Z
2. Then

FðhÞ ¼
P2

n¼0

P2

m¼0

eAðh; ne1 þme2ÞFnmðh1Þ:

With �0 defined as usual, F02, F20 and F11 are the Fourier

transforms defined on subsets of the above-mentioned grid

whose sum of coordinates equals 2 modulo 3. All other Fnm’s

are related to them by symmetry operators. Let us now define

Y2ðh1Þ ¼ eAðh; 2e2ÞF02ðh1Þ

þ eAðh; 2e1ÞF20ðh1Þ þ eAðh; e1 þ e2ÞF11ðh1Þ:

Note that here Y2 denotes the Fourier transform of the subgrid

S��0, rather than �0, as in paper I. The reason we prefer S��0

over �0 is that the former is invariant under the action of the

symmetry operator �. We need to have a subgrid invariant

under the action of � during this first decomposition because

we will use it as a starting grid for the diagonal mirror

decomposition in the second step. The subgrid �0 is depicted

in Fig. 8 by the blue triangles. The green triangles symbolize

elements of S�2 ð�0Þ, while the yellow ones belong to S�ð�0Þ.

Now the Fourier transform F can be expressed in terms of

Y2:

FðhÞ ¼ Y2ðh1Þ þ eAðh; t�ÞY2ðR
T
�h1Þ þ eAðh; t�2 ÞY2ðR

T
�2 h1Þ:
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Figure 7
Subgrid decomposition of the A0x1 þ e1 subgrid for the p6 symmetry in
the case the number of points along x and y axes is divisible by 2.



We have to compute the Fourier transforms F02, F20 and F11.

They are defined on different parts of S��0 and they all reveal

the diagonal mirror symmetry due to the form the symmetry

operator � has in the grid coordinates (21). In order to reduce

this symmetry, if N is even, we apply formula (13), otherwise,

we use a formula appropriate for the prime divisor p of N. A

slight modification to the above formulae is needed since here

we deal with diagonal mirror �yy; �xx as opposed to y; x in x3. We

will describe this algorithm using the example of even N. In

this case, we introduce the new decomposition matrices ~AA0

and ~AA1:

~AA0 ¼
2 0

0 2

� �
and ~AA1 ¼

N=2 0

0 N=2

� �
:

Then we perform another, finer, decomposition in the real

space:

x1 ¼
~AA0 ~xx1 þ ~xx0;

where ~xx0 2 f0; e1; e2; e1 þ e2g and ~xx1 belongs to Z2= ~AA1Z
2. Let

fnm;jk denote the function fnm restricted to the ði; jÞth subgrid

(coming from the above decomposition) of the ðn;mÞth

subgrid. Keeping in mind observation (10), let us now define

ðF02;00Þð
~hh1Þ ¼

P
~xx12

~XX1

ðf02;00Þð~xx1Þe ~AA1
ð ~hh1; ~xx1Þ

¼
P

~xx12
~XX1

f02ð
~AA0 ~xx1Þe ~AA1

ðh1; ~xx1Þ

¼
P

~xx12
~XX1

f ðA0
~AA0 ~xx1 þ 2e2Þe ~AA1

ðh1; ~xx1Þ;

and analogously F02;10, F02;01 and F02;11. Then

F02ðh1Þ ¼ F02;00ð
~hh1Þ þ eA1

ðh1; e1ÞF02;10ð
~hh1Þ

þ eA1
ðh1; e2ÞF02;01ð

~hh1Þ þ eA1
ðh1; e1 þ e2ÞF02;11ð

~hh1Þ:

Observe that, for K ¼ 2e1, K ¼ e1 þ e2 or K ¼ 2e2, we have

S�ðA0
~AA0 ~xx1 þKÞ ¼ A0ð

~AA0ðS� ~xx1Þ þ e1 þ e2Þ þ K: ð22Þ

Hence, since f ðS�xÞ ¼ f ðxÞ and S2
� ¼ I, we obtain

F02;00ð
~hh1Þ ¼

P
~xx12

~XX1

f ðS�ðA0
~AA0 ~xx1 þ 2e2ÞÞe ~AA1

ð ~hh1; S2
� ~xx1Þ:

By standard algebra, one can check that

e ~AA1
ð ~hh1; S2

� ~xx1Þ ¼ e ~AA1
ð ~hh1; t�Þe ~AA1

ðRT
�

~hh1; S� ~xx1Þ:

From the above and (22), it follows thatP
~xx12

~XX1

f ðS�ðA0
~AA0 ~xx1 þ 2e2ÞÞe ~AA1

ð ~hh1; S2
� ~xx1Þ

¼ e ~AA1
ð ~hh1; t�Þ

P
~xx12

~XX1

f ðA0ð
~AA0S� ~xx1 þ e1 þ e2Þ þ 2e2Þ

� e ~AA1
ðRT

�
~hh1; S� ~xx1Þ

¼ e ~AA1
ð ~hh1; t�Þ

P
~xx12

~XX1

f02;11ðS� ~xx1Þe ~AA1
ðRT

�
~hh1; S� ~xx1Þ

¼ e ~AA1
ð ~hh1; t�ÞF02;11ðR

T
�

~hh1Þ:

Therefore, the two transforms of the subgrids are symmetry

related:

F02;00ð
~hh1Þ ¼ e ~AA1

ð ~hh1; t�ÞF02;11ðR
T
�

~hh1Þ:

Analogously, we derive the remaining symmetry relations

F20;00ð
~hh1Þ ¼ e ~AA1

ð ~hh1; t�ÞF20;11ðR
T
�

~hh1Þ

and

F11;00ð
~hh1Þ ¼ e ~AA1

ð ~hh1; t�ÞF11;11ðR
T
�

~hh1Þ:

Consequently, we can compute this partial Fourier transform

using the formula

Xðh1Þ ¼ e ~AA1
ð ~hh1; t�ÞX11ðR

T
�

~hh1Þ þ eA1
ðh1; e1 þ e2ÞX11ð

~hh1Þ

þ eA1
ðh1; e1ÞX10ð

~hh1Þ þ eA1
ðh1; e2ÞX01ð

~hh1Þ;

where X ¼ F02, F20 or F11. The partial Fourier transforms X01

and X10 should be decomposed further.

This algorithm applies to the ITC groups 156, 158, 187, 188.

In this section, we have used the ‘no special points’ algor-

ithm for the p3 symmetry from paper I, therefore, we had to

assume that A ¼ 3NI. To release this condition, we can always

use the conceptually more complicated p3 algorithm with

special points instead.

4.3.1. Reducing rhombohedral centering of the p3
symmetric SP grid. The algorithm for rhombohedral

centering was described in paper III. It can be combined with

the algorithm for p3 symmetry SP grid (ITC groups 148 and

155) in a manner similar to the p3 GP grid, which was

described in detail in paper III.

5. Cubic groups

All cubic groups contain symmetry operators whose rotational

parts are the same as those of the symmetry operators: �xx; �yy; z

and �xx; y; �zz. We will denote these operators by � and �,

respectively. The subgroup generated by these operators is

G ¼ fe; �; �; ��g. We begin by reducing the symmetry

induced by these operators. Again, as in the other cases

described in paper II and in this paper, the choice of an
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Figure 8
Subgrid decomposition for p3 group, for N ¼ 2. The data point locations
are symbolized by black dots. The subgrid S��0 consists of data points
located in yellow triangles.



algorithm depends most heavily on the rotational part of the

symmetry operator. Therefore, even if the actual generators of

a cubic group differ from � and � by a translational part, it will

incur only slight changes in our formulae, but the decom-

position will remain the same.

Let us start again with a typical case, in which the grid size is

divisible by 2. In the case of cubic groups, there is no dimen-

sion in which the symmetry operators act trivially, and the

problem must be approached in three dimensions. We choose

A ¼

2N 0 0

0 2N 0

0 0 2N

2
4

3
5 and b ¼ �

1=2

1=2

1=2

2
4

3
5

and

A0 ¼

2 0 0

0 2 0

0 0 2

2
4

3
5 and A1 ¼

N 0 0

0 N 0

0 0 N

2
4

3
5:

It will soon be clear why we decompose the computational

grid into eight subgrids, although the symmetry subgroup in

question has only four elements. Let us also define

� ¼ Z3=AZ3 and X1 ¼ Z
3=A1Z

3:

The symmetry operators � and � are described in grid coor-

dinates by

R� ¼

�1 0 0

0 �1 0

0 0 1

2
64

3
75 and t� ¼

1

1

0

2
64

3
75

R� ¼

�1 0 0

0 1 0

0 0 �1

2
64

3
75 and t� ¼

1

0

1

2
64

3
75:

Moreover,

R�� ¼

1 0 0

0 �1 0

0 0 �1

2
4

3
5 and t�� ¼

0

1

1

2
4

3
5:

Let us use the decomposition of x, given by (3), to introduce

eight new functions:

fnmlðx1Þ ¼ f ðA0x1 þ ne1 þme2 þ le3Þ;

where x1 2 X1 and n;m; l 2 f0; 1g. Here, as in (24),

�0 ¼ A0X1. The grid �0 is colored red in Fig. 9.

Then, the Fourier transform F can be expressed as

FðhÞ ¼ F000ðh1Þ þ eAðh; e1 þ e2ÞF110ðh1Þ

þ eAðh; e1 þ e3ÞF101ðh1Þ þ eAðh; e2 þ e3ÞF011ðh1Þ

þ eAðh; e1ÞF100ðh1Þ þ eAðh; e2ÞF010ðh1Þ

þ eAðh; e3ÞF001ðh1Þ þ eAðh; e1 þ e2 þ e3ÞF111ðh1Þ:

Moreover,

F000ðh1Þ ¼ eAðh1; t�ÞF110ðR
T
�h1Þ

¼ eAðh1; t�ÞF101ðR
T
� h1Þ

¼ eAðh1; t��ÞF011ðR
T
��h1Þ:

Analogously,

F111ðh1Þ ¼ eAðh1; t�ÞF001ðR
T
�h1Þ

¼ eAðh1; t�ÞF010ðR
T
� h1Þ

¼ eAðh1; t��ÞF100ðR
T
��h1Þ:

Hence,

FðhÞ ¼ F000ðh1Þ þ eAðh1; t�ÞeAðh; e1 þ e2ÞF000ðR
T
�h1Þ

þ eAðh1; t�ÞeAðh; e1 þ e3ÞF000ðR
T
� h1Þ

þ eAðh1; t��ÞeAðh; e2 þ e3ÞF000ðR
T
��h1Þ

þ eAðh1; t��ÞeAðh; e1ÞF111ðR
T
��h1Þ

þ eAðh1; t�ÞeAðh; e2ÞF111ðR
T
� h1Þ

þ eAðh1; t�ÞeAðh; e3ÞF111ðR
T
�h1Þ

þ eAðh; e1 þ e2 þ e3ÞF111ðh1Þ:

The symmetry will be reduced further if the space group

contains the inversion operator (�xx; �yy; �zz). The inversion

symmetry operator � is given in grid coordinates by

R� ¼

�1 0 0

0 �1 0

0 0 �1

2
4

3
5 and t� ¼

1

1

1

2
4

3
5:

Thus we arrive at the relationship between F000 and F111:

F000ðh1Þ ¼ eAðh1; t�ÞF111ðR
T
� h1Þ: ð23Þ

Alternatively, the Hermitian symmetry can be used in this step

if the input data are all real numbers (x7). We will proceed now

to reducing the P3 symmetry. All cubic groups contain

symmetry operators y; z; x and z; x; y (i.e. 120 and 240�

counterclockwise rotations around the main diagonal),

described in the grid coordinates by
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Figure 9
Subgrid decomposition for a cubic group for N ¼ 2. The data points are
located in the centers of cubes. The asymmetric unit �0 is represented by
the eight red cubes.



R� ¼

0 1 0

0 0 1

1 0 0

2
4

3
5 and R�2 ¼

0 0 1

1 0 0

0 1 0

2
4

3
5

and t� ¼ t�2 ¼ 0. To reduce the symmetry induced by these

operators, we will use the function f000 from the previous stage

(if there is no inversion in the space group and Hermitian

symmetry is not present, both f000 and f111 will be needed). So

far, we have reduced symmetry eight times and we have only

to compute the Fourier transform F000. Assuming that N is

even, we can choose ~AA0 ¼ 2I and ~AA1 ¼ ðN=2ÞI. Let us

decompose x1, according to rule (3), to introduce eight new

functions:

f000;nmlð~xx1Þ ¼ f000ð
~AA0 ~xx1 þ ne1 þme2 þ le3Þ;

where ~xx1 2 Z
3= ~AA1Z

3 and n;m; l 2 f0; 1g. This decomposition

is depicted in Fig. 10.

To avoid excessive subscripts, from now on we omit the first

subscript 000, that is F stands for F000. Then, the Fourier

transform F can be expressed as

Fðh1Þ ¼ F000ð
~hh1Þ þ eA1

ðh1; e1 þ e2ÞF110ð
~hh1Þ

þ eA1
ðh1; e1 þ e3ÞF101ð

~hh1Þ þ eA1
ðh1; e2 þ e3ÞF011ð

~hh1Þ

þ eA1
ðh1; e1ÞF100ð

~hh1Þ þ eA1
ðh1; e2ÞF010ð

~hh1Þ

þ eA1
ðh1; e3ÞF001ð

~hh1Þ þ eA1
ðh1; e1 þ e2 þ e3ÞF111ð

~hh1Þ:

Moreover,

F100ð
~hh1Þ ¼ F001ðR

T
�

~hh1Þ ¼ F010ðR
T
�2

~hh1Þ:

Analogously,

F110ð
~hh1Þ ¼ F101ðR

T
�

~hh1Þ ¼ F011ðR
T
�2

~hh1Þ:

Hence, the final formula is

Fðh1Þ ¼ F000ð
~hh1Þ þ eA1

ðh1; e1 þ e2ÞF110ð
~hh1Þ

þ eA1
ðh1; e1 þ e3ÞF110ðR

T
�2

~hh1Þ

þ eA1
ðh1; e2 þ e3ÞF110ðR

T
�

~hh1Þ

þ eA1
ðh1; e1ÞF001ðR

T
�

~hh1Þ þ eA1
ðh1; e2ÞF001ðR

T
�2

~hh1Þ

þ eA1
ðh1; e3ÞF001ð

~hh1Þ þ eA1
ðh1; e1 þ e2 þ e3ÞF111ð

~hh1Þ:

This formula resembles the one for FðhÞ but note that now the

relationships between Fourier transforms of the subgrids are

different. Namely, this time one has to compute the Fourier

transforms F100 and F110 and decompose further F000 and F111.

If N is a power of 2, then this next decomposition will be

exactly the same as above. If N has a different prime-factor

decomposition, then it is sufficient to slightly alter this scheme,

as with other described algorithms. For example, if prime

factor is 3, out of 27 Fourier transforms we compute only 8:

F100, F110, F200, F220, F122, F112, F120 and F210, and we decompose

further F000, F111 and F222.

The formulae here were derived for ITC group 200, that is

Pm�33. The ITC space groups 197, 201, 205, 207, 208, 212, 213

differ from 200 only in that their generating symmetry

operators have different translational parts, therefore there

has to be a change in the coefficients in the above formulae

reflecting it. For the space groups where there is no inversion,

e.g. ITC group 195 (P23), we will use Hermitian symmetry to

derive relationship between F000 and F111 (x7). If the Hermi-

tian symmetry is not present either, we have to compute both
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Figure 11
Decomposition in the case of two consecutive recursive symmetry
decompositions with respect to different symmetry subgroups. In such a
case, a GP grid with respect to one symmetry can be a SP grid with respect
to the other. As such, it will be decomposed again but according to
different rules. SP and GP grids with respect to the symmetry applied first
are colored red and green, respectively. SP and GP grids with respect to
the other symmetry are colored blue and yellow. For simplicity, grids that
are GP grids with respect to both symmetries have been omitted.

Figure 10
Subgrid decomposition for a cubic group for N ¼ 2. The data points are
located in the centers of colored cubes.



F000 and F111 from the first stage. Reducing the internal

symmetry of F111 is exactly the same as that of F000.

For groups 215–230, we have to combine this algorithm with

diagonal mirror-symmetry reduction. To this end, observe that

both F001 and F110 (from the trigonal symmetry reduction

stage) preserve diagonal mirror symmetry, so they can be

decomposed further as in the diagonal mirror algorithm (x3).

Combining several recursive symmetry decompositions will be

discussed in the next section.

For some space groups, we have also to reduce centering.

The discussed algorithm can be combined with body centering

or with face centering according to the general rules, as

described in paper III.

6. Combining several recursive symmetry-reduction
algorithms

As we saw at the end of the previous section, for some groups

we have to combine several recursive symmetry decomposi-

tions. Such a combination is rather straightforward (Fig. 11).

6.1. Intersecting diagonal mirrors combined with p3
symmetry

The most complicated combination of symmetries arises

when intersecting diagonal mirrors are combined with the p3

symmetry. Such a combination of symmetries can be found in

ITC groups 183–186 and 191–194. Reducing this symmetry

requires three recursive decompositions with respect to

different sets of operators.

We first perform a decomposition with respect to the p3

symmetry and as a result we obtain four subgrids, three of

which are GP subgrids with respect to this symmetry, and the

fourth one is a SP subgrid. Since the three GP subgrids are

symmetry related, it is sufficient to consider one of them. We

choose the one that is invariant with respect to both y; x and

�yy; �xx diagonal mirror-symmetry operators (blue subgrid in

Fig. 12).

We will not discuss the SP grid with respect to the p3

symmetry, as it can be decomposed further according to the p3

recursive symmetry algorithm described earlier. Let us instead

focus on the GP subgrid that is invariant with respect to both

intersecting diagonal mirrors (see Fig. 13).

As before, we will perform a step-by-step reduction of the

symmetry of this subgrid. Let us start with reducing the

symmetry related to the diagonal mirror y; x. To this end, let us

decompose the GP grid obtained from the previous step,

which is a SP grid with respect to the diagonal mirror y; x

symmetry. For simplicity, we assume that the number of points

in this GP grid is even. We apply the usual diagonal mirror

decomposition (x3). Since the trigonal symmetry has already

been reduced, we draw the asymmetric unit as a square, which

we find more convenient for the purpose of illustrating the

diagonal mirror symmetry (Fig. 14). The red subgrid ð0; 0Þ in

Fig. 14 is a symmetric image of the green subgrid ð1; 1Þ in the

diagonal mirror �yy; �xx. On the other hand, the yellow subgrid

ð0; 1Þ is a symmetric image of the blue subgrid ð1; 0Þ in the

diagonal mirror y; x. Therefore, it is sufficient to consider

further the red grid and the blue grid. The blue subgrid ð1; 0Þ
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Figure 12
Decomposition of the SP grid with respect to p3 symmetry. The number
of grid points is even, but not divisible by three. The blue subgrid is a GP
subgrid with respect to p3 symmetry but is a SP subgrid with respect to
both the y; x and �yy; �xx symmetry operators.

Figure 14
Decomposition of the blue subgrids from Fig. 13 with respect to the
diagonal mirror y; x symmetry. The blue and yellow subgrids are GP, red
and green are SP with respect to the diagonal mirror y; x. However,
yellow and blue grids are SP, and the other two are GP with respect to the
other diagonal mirror symmetry. For clarity, the decomposition is
presented on a rectangular grid and there are more points than in Fig. 13.

Figure 13
A p3 GP subgrid invariant with respect to both intersecting diagonal
mirrors. This subgrid is decomposed further.



no longer reveals the y; x symmetry, but it still possesses the

�yy; �xx symmetry. Therefore, it can be decomposed again, as in

Fig. 15. At this point, the only remaining symmetry is induced

by the single diagonal mirror, and it is sufficient to apply the

algorithm described in x3.

Let us now go back to the red grid ð0; 0Þ from Fig. 13. This

grid reveals the diagonal mirror y; x symmetry and will be

decomposed in a manner similar to the previous one (Fig. 16).

Thus the symmetry will eventually be reduced completely.

6.2. Similar algorithms

The algorithm for reducing the p3 symmetry on a SP grid

can be combined with reducing the z-mirror symmetry (paper

II), or with rhombohedral centering (paper III).

7. Hermitian symmetry

So far, we have discussed the complex-to-complex crystal-

lographic Fourier transform. To apply our algorithm to actual

crystallographic data, where electron density is represented by

real numbers, one needs to combine the crystallographic

symmetry reduction with Hermitian symmetry, which imposes

the following relation in the reciprocal space:

FðhÞ ¼ Fð�hÞ:

Since the Hermitian-symmetry reduction is very similar to any

other symmetry-reduction step, it can be combined with the

others using the general rules described earlier in this paper.

Of course, since the crystallographic symmetry reduction

algorithm deals with complex numbers, the Hermitian

symmetry reduction should be applied first. In most cases, a

direction can be selected such that two real numbers neigh-

boring along this direction are ‘packed’ together into one

complex number, and the real and imaginary subgrids have

the same symmetry properties. Only in some cubic groups will

the first step be different (Table 2, Appendix B). In these

cases, the reduction of the fourfold orthorhombic symmetry

can be combined with the reduction of the Hermitian

symmetry into one simple step (denoted by H8 in Appendix

B). The Hermitian symmetry simplifies the problem in a very

similar way to the inversion. For example, for the case

discussed in x5, the Hermitian symmetry introduces the rela-

tionship

F000ðh1Þ ¼ F111ð�h1Þ;

which allows for an efficient symmetry reduction (23). The

problem is thus reduced to solving rhombohedral symmetry.

In some space groups, the residual rhombohedral symmetry

will include additional centering. In such a case, one can start

with complex-to-complex symmetry reduction, as described in

Appendix B, and combine it with the Hermitian symmetry

reduction using general rules. Alternatively, one can combine

reducing Hermitian symmetry with reduction of orthorhombic

symmetry or centering, as sketched above.

Since our choice of the coordinate system in the real space,

and the symmetry reduction methods described above, ensure

that in real space there are no SP grids except for one-point

grids, the Hermitian symmetry reduction in the real space is

straightforward. In the reciprocal space, however, we have to

deal with issues that are not encountered with a classical

choice of coordinate system.

The FFT asymmetric units in the reciprocal space that are

compatible with our symmetry reduction methods have been

described in detail in paper IV. We have also presented there a

general algorithm that resulted in an optimal FFT asymmetric

unit in the reciprocal space for complex-to-complex data and

any grid sizes for all crystallographic groups, for which one-

step symmetry reduction is applicable (paper II). We have

shown that the shapes of FFT asymmetric units in the recip-

rocal space can be generated by careful management of

special points (systematic absences).

The Hermitian symmetry introduces one new class of

special points, namely ‘fixed phase’ points h, for which there

exists a g 2 G such that

½�RT
g h�AT ¼ h;

where ½�RT
g h�AT denotes the equivalence class of a vector

�RT
g h with respect to matrix AT (paper IV), that is
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Figure 15
Decomposition of the blue subgrids from Fig. 14. Blue and yellow
subgrids are invariant for diagonal mirror �yy; �xx symmetry, while the green
and red subgrids are symmetry related for this symmetry.

Figure 16
Decomposition of the red subgrid from Fig. 14. Red and green subgrids
are symmetry invariant, while yellow and blue subgrids are symmetry
related for the diagonal mirror y; x.



½h�AT :¼ fk 2 Z3 : k� h 2 AT
Z

3
g:

Then, remembering that, for all elements g of the crystal-

lographic group G, S�gFðhÞ ¼ FðhÞ and from the general

formula

S�gFðhÞ ¼ expð�2�ih �A�1tgÞFðR
T
g hÞ

one can derive that, regardless of the real-space data, the

phase of FðhÞ is fixed:

argðFðhÞÞ ¼ ��h �A�1tg:

The simplest case of fixed phase points are those with only real

or only imaginary parts. The number of fixed-phase points is

always even and they can be managed by packing in pairs,

choosing partners that are multiplied by similar coefficients

(twiddle factors) during Fourier transform (e.g. ones that

differ by � or �=2). This procedure naturally extends our

recipe for the FFT asymmetric unit (ASU) presented in paper

IV (Kudlicki et al., 2004), with the size of the FFT ASU

additionally reduced by half. Such an approach ensures a

completely optimal in-place crystallographic FFT.

8. Discussion

This paper completes the presentation of the theoretical

foundations of algorithms for fully efficient crystallographic

FFT. Now all the crystallographic symmetries have been

covered, as summarized in the tables in the present paper and

in papers II and III. The choice of appropriate FFT ASU in

reciprocal space is described in paper IV. In this paper, we

presented the recursive symmetry decomposition, which we

use to reduce the crystallographic symmetry when grid points

in special positions are present. The recursive symmetry

decomposition is more general than the decompositions

discussed previously. Since we no longer require that the grid

contains no special points, we can apply this algorithm to any

crystallographic group, not only to those included in Appendix

B. Also, one can construct a recursive algorithm for any

number of points along unit-cell edges, however, the calcula-

tions are both faster and simpler when these numbers are

products of small primes. We have drawn attention to these

two observations while discussing the p3 symmetry in x4.1.

The one-step algorithms described previously are used as

building blocks for the recursive ones, which could not exist

without them. This recursive decomposition should be thought

of as a method of reducing the general case to the ‘no special

points case’ applied several times. Moreover, the one-step

algorithms can work with simpler data structures and loop

organization, so they should be chosen whenever both alter-

natives are possible.

The recursive algorithms are more complicated than

algorithms presented before but they still can be built from

simple pieces. Unlike in one-step symmetry reduction, details

of these algorithms strongly depend on the prime-factor

decomposition of the number of grid points in the unit cell.

Our symmetric FFT is a generalization of the Cooley–Tukey

algorithm, and most implementation issues are characteristic

of non-crystallographic Cooley–Tukey routines. The recursive

algorithms presented here can be implemented as a series of

three-dimensional P1 FFT’s, supplied with symmetry-reduc-

tion steps. Since the computational complexity of the

symmetry reduction is OðNÞ, the majority of calculations

performed are in the P1 FFT step. Moreover, both in the

symmetry reduction and in the P1 calculation, the memory

access patterns are regular, which makes them compatible

with efficient stride-based cache prefetching. The crystal-

lographic FFT will thus benefit from application of generic

highly optimized fast Fourier transform implementations.

APPENDIX A
The symmetry-reduction formula

The formula that allows the multi-dimensional Cooley–Tukey

factorization to be combined with crystallographic symmetry

was derived by Bricogne (1993) and, under weaker assump-

tions, in paper II. Such algorithms have to be group specific.

Let A be the matrix describing the periodic computational

grid. Then jdet Aj is the number of points in the unit cell.

Suppose that for the quotient crystallographic group G there

exist matrices A0 and A1 satisfying (2). Suppose also that these

matrices are such that the number of elements of G, denoted

by jGj, equals jdet A1j:

jGj ¼ jdet A1j:

Let �0 denote

�0 ¼ A0X1: ð24Þ

Let f be any function on � that respects the crystallographic

symmetry, that is such that

f ðxÞ ¼ f ðSgxÞ ð25Þ

for any x 2 � and g 2 G.

We will require that the following assumptions are satisfied.

1. The grid � can be expressed as a sum of jGj mutually

disjoint sets Sgi
�0, where gi 2 G, that is

Sg1
�0 \ Sg2

�0 ¼ ; for g1 6¼ g2

and

� ¼
[
g2G

Sg�0: ð26Þ

Then,

j�j ¼ jGjj�0j:

2. For every g 2 G we have:

Sgð�0Þ ¼ ½tg��0
¼ fx 2 � : x ¼ cþ tg and c 2 �0g:

3. Matrix A commutes with Rg for every g 2 G:

ARg ¼ RgA:
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Here, �0 plays the role of the asymmetric unit. Let us intro-

duce the symbol Yðh1Þ for the Fourier transform of the data in

the asymmetric unit �0,

Yðh1Þ ¼
P

c2�0

f ðcÞeAðh1; cÞ:
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Table 1
Algorithms for recursive crystallographic symmetry reduction.

Columns 1 and 2: crystallographic group number and symbol; column 3:
number of elements; columns 4, 5 6, 7: algorithm types (for one-step symmetry
reduction algorithms and reducing centering see papers II and III,
respectively).

No. Name jGj Algorithm: steps

99 P4mm 8 yx 2x2y
100 P4bm 8 yx 2x2y
101 P42cm 8 yx 2x2y
102 P42nm 8 yx 2x2y
103 P4cc 8 yx 2x2y
104 P4nc 8 yx 2x2y
105 P42mc 8 yx 2x2y
106 P42bc 8 yx 2x2y
107 I4mm 16 yx 2x2y ICent
108 I4cm 16 yx 2x2y ICent
109 I41md 16 yx 2x2y ICent
110 I41cd 16 yx 2x2y ICent
111 P�442m 8 yx 2x2y
112 P�442c 8 yx 2x2y
113 P�4421m 8 yx 2x2y
114 P�4421c 8 yx 2x2y
121 I �442m 16 yx 2x2y ICent
122 I �442d 16 yx 2x2y ICent
123 P4=mmm 16 yx 2x2y2z
124 P4=mcc 16 yx 2x2y2z
125 P4=nbm 16 yx 2x2y2z
126 P4=nnc 16 yx 2x2y2z
127 P4=mbm 16 yx 2x2y2z
128 P4=mnc 16 yx 2x2y2z
129 P4=nmm 16 yx 2x2y2z
130 P4=ncc 16 yx 2x2y2z
131 P42=mmc 16 yx 2x2y2z
132 P42=mcm 16 yx 2x2y2z
133 P42=nbc 16 yx 2x2y2z
134 P42=nnm 16 yx 2x2y2z
135 P42=mbc 16 yx 2x2y2z
136 P42=mnm 16 yx 2x2y2z
137 P42=nmc 16 yx 2x2y2z
138 P42=ncm 16 yx 2x2y2z
139 I4=mmm 32 yx 2x2y2z ICent
140 I4=mcm 32 yx 2x2y2z ICent
141 I41=amd 32 yx 2x2y2z ICent
142 I41=acd 32 yx 2x2y2z ICent
147 P�33 6 P3a 2z
148 R�33 18 P3a 2z RCent
150 P321 6 P3a 2z
152 P3121 6 P3a 2z
154 P3221 6 P3a 2z
155 R32 18 P3a 2z RCent
156 P3m1 6 3(x+y) �y�x
157 P31m 6 P3a yx
158 P3c1 6 3(x+y) �y�x
159 P31c 6 P3a yx
160 R3m 18 3(x+y) �y�x RCent
161 R3c 18 3(x+y) �y�x RCent
162 P�331m 12 P3a yx 2z
163 P�331c 12 P3a yx 2z
164 P�33m1 12 P3a yx 2z
165 P�33c1 12 P3a yx 2z
166 R�33m 36 P3a �y�x 2z RCent
167 R�33c 36 P3a �y�x 2z RCent
168 P6 6 P6
169 P61 6 P6
170 P65 6 P6
171 P62 6 P6
172 P64 6 P6
173 P63 6 P6
175 P6=m 12 P6 2z
176 P63=m 12 P6 2z
177 P622 12 P6 2z
178 P6122 12 P6 2z

Table 1 (continued)

No. Name jGj Algorithm: steps

179 P6522 12 P6 2z
180 P6222 12 P6 2z
181 P6422 12 P6 2z
182 P6322 12 P6 2z
183 P6mm 12 P3a yx �y�x
184 P6cc 12 P3a yx �y�x
185 P63cm 12 P3a yx �y�x
186 P63mc 12 P3a yx �y�x
187 P�66m2 12 3(x+y) �y�x 2z
188 P�66c2 12 3(x+y) �y�x 2z
189 P�662m 12 P3a yx 2z
190 P�662c 12 P3a yx 2z
191 P6=mmm 24 P3a yx �y�x 2z
192 P6=mcc 24 P3a yx �y�x 2z
193 P63=mcm 24 P3a yx �y�x 2z
194 P63=mmc 24 P3a yx �y�x 2z
195 P23 12 A8(2) P3c
196 F23 48 A8(2) P3c FCent
197 I23 24 A8(1) P3c
198 P213 12 A8(2) P3c
199 I213 24 A8(2) P3c ICent
200 Pm�33 24 A8(1) P3c
201 Pn�33 24 A8(1) P3c
202 Fm�33 96 A8(1) P3c FCent
203 Fd�33 96 A8(1) P3c FCent
204 Im�33 48 A8(1) P3c ICent
205 Pa�33 24 A8(1) P3c
206 Ia�33 48 A8(1) P3c ICent
207 P432 24 A8(1) P3c
208 P4232 24 A8(1) P3c
209 F432 96 A8(1) P3c FCent
210 F4132 96 A8(1) P3c FCent
211 I432 48 A8(1) P3c ICent
212 P4332 24 A8(1) P3c
213 P4132 24 A8(1) P3c
214 I4132 48 A8(1) P3c ICent
215 P�443m 24 A8(2) P3c yx
216 F �443m 96 A8(2) P3c yx FCent
217 I �443m 48 A8(2) P3c yx ICent
218 P�443n 24 A8(2) P3c yx
219 F �443c 96 A8(2) P3c yx FCent
220 I �443d 48 A8(2) P3c yx ICent
221 Pm�33m 48 A8(1) P3c yx
222 Pn�33n 48 A8(1) P3c yx
223 Pm�33n 48 A8(1) P3c yx
224 Pn�33m 48 A8(1) P3c yx
225 Fm�33m 192 A8(1) P3c yx FCent
226 Fm�33c 192 A8(1) P3c yx FCent
227 Fd�33m 192 A8(1) P3c yx FCent
228 Fd�33c 192 A8(1) P3c yx FCent
229 Im�33m 96 A8(1) P3c yx ICent
230 Ia�33d 96 A8(1) P3c yx ICent

Symbol explanation. 2x: regular subgrid consisting of every second point along the x axis.
2x2y: regular subgrid consisting of every second point along x and y axes. 2x2y2z: regular
subgrid consisting of every second point along x, y and z axes (paper II). yx, �y�x:
diagonal mirror. 3(x+y): subgrid of xþ y divisible by 3 (reducing p3 symmetry of GP grid,
x4.3). ICent: body centering (paper III). FCent: all-face centering (paper III). P3a:
recursive trigonal with points on axes (reducing p3 symmetry of SP grid), x4.1. P3c: same,
axis along cube diagonal, x5. P6: recursive algorithm for hexagonal set-up (with data on
axes), x4.2. RCent: rhombohedral centering (paper III). A8(1), A8(2): same as 2x2y2z,
with further decomposition of 1 (with inversion) or 2 (if there is no inversion) out of 8
subgrids, x5.



With this notation,

FðhÞ ¼
P
g2G

eAðA
T
1 h0; tgÞeAðh1; tgÞYðR

T
g h1Þ:

Let us introduce the notation

Zðh1; tgÞ ¼ eAðh1; tgÞYðR
T
g h1Þ:

Then,

Fðh1 þAT
1 h0Þ ¼

P
g2G

eAðA
T
1 h0; tgÞZðh1; tgÞ: ð27Þ

The above formula shows how to compute the Fourier trans-

form of the unit cell using only P1 Fourier transform of the

asymmetric unit (Y). This way, one performs FFT on 1=jGj of

the starting number of points. This is the maximal possible

reduction as one cannot use fewer points than there are in the

asymmetric unit. Such a symmetry reduction is possible for a

large number of space groups.

A reasoning similar to that in paper II, leading to the same

final formula (27), has been performed by Bricogne (1993).

However, he built it on a more restrictive assumption that A,

A0 and A1 all commute with Rg for every g 2 G. Such a strict

assumption is not necessary and, what is more important, it

cannot be satisfied for some of the most interesting cases (e.g.

the p3 symmetry, paper I).

APPENDIX B
Tables

The algorithms described in this paper (Tables 1 and 2)

depend on the prime-factor decomposition of the number of

points in the asymmetric unit. For every space group, there is a

family of similar algorithms rather than one algorithm, as was

the case in papers II and III. Therefore, a recursive-symmetry

decomposition symbol, such as yx should be understood as

follows: choose the right algorithm from the family of ‘diag-

onal mirror y; x’ algorithms, depending on the periodicity of

data. We no longer differentiate symbols for symmetry

operators that have the same rotational part, for example y; x

and yþ 1
2 ; xþ 1

2, we denote them both by yx. The notation is

explained in more detail in the table footnote. Each row starts

with the ITC number and name of the group, followed by the

number of symmetry operators (approximately equal to the

speed up achieved by using our algorithms). The last columns

contain a list of basic algorithms used (see table footnote for

symbol definitions).
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Table 2
Algorithms for recursive crystallographic symmetry reduction specific to
Hermitian symmetry.

Columns as in Table 1.

No. Name jGj Algorithm: steps

195 P23 12 H8 P3c
196 F23 48 H8 P3c FCent
198 P213 12 H8 P3c
199 I213 24 H8 P3c ICent
215 P�443m 24 H8 P3c yx
216 F �443m 96 H8 P3c yx FCent
217 I �443m 48 H8 P3c yx ICent
218 P�443n 24 H8 P3c yx
219 F �443c 96 H8 P3c yx FCent
220 I �443d 48 H8 P3c yx ICent

Symbols as in Table 1, H8 same as 2x2y2z, use the Hermitian relation to reduce the
orthorhombic symmetry (x7).


